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Heartbeat Classification Using Feature Selection
Driven by Database Generalization Criteria

Mariano Llamedo* and Juan Pablo Martı́nez

Abstract—In this paper, we studied and validated a simple heart-
beat classifier based on ECG feature models selected with the focus
on an improved generalization capability. We considered features
from the RR series, as well as features computed from the ECG
samples and different scales of the wavelet transform, at both avail-
able leads. The classification performance and generalization were
studied using publicly available databases: the MIT-BIH Arrhyth-
mia, the MIT-BIH Supraventricular Arrhythmia, and the St. Pe-
tersburg Institute of Cardiological Technics (INCART) databases.
The Association for the Advancement of Medical Instrumentation
recommendations for class labeling and results presentation were
followed. A floating feature selection algorithm was used to obtain
the best performing and generalizing models in the training and
validation sets for different search configurations. The best model
found comprehends eight features, was trained in a partition of the
MIT-BIH Arrhythmia, and was evaluated in a completely disjoint
partition of the same database. The results obtained were: global
accuracy of 93%; for normal beats, sensitivity (S) 95%, positive
predictive value (P + ) 98%; for supraventricular beats, S 77%,
P + 39%; and for ventricular beats S 81%, P + 87%. In order
to test the generalization capability, performance was also evalu-
ated in the INCART, with results comparable to those obtained in
the test set. This classifier model has fewer features and performs
better than other state-of-the-art methods with results suggesting
better generalization capability.

Index Terms—Feature selection, heartbeat classification, linear
classifier, wavelet transform (WT).

I. INTRODUCTION

THE ANALYSIS of the ECG signal provides a noninva-
sive and inexpensive technique to analyze the heart func-

tion for different cardiac conditions. In the past decades, the
computerized analysis of the ECG became a well-established
practice, and many improvements were achieved to aid cardiol-
ogists in the task of analyzing long-term ECG recordings. One
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important analysis performed in the ECG is the classification
of heartbeats, which is important for the study of arrhythmias.
Arrhythmias are understood as any disturbance in the rate, reg-
ularity, site of origin, or conduction of the electrical impulses
through the heart [1]. While some types of arrhythmias represent
a life threat in the very short term (e.g., ventricular fibrillation),
there are other types that appear less frequently and represent
a long-term threat without proper treatment. It is in these later
cases, which require carefully inspection of long-term ECG
recordings, where the use of automatic algorithms represents an
important help for the diagnostic.

Many algorithms for ECG classification were developed in
the past decade [2]–[11], but only few of them have completely
comparable methodologies, and therefore, results [4], [8], [10].
The Association for the Advancement of Medical Instrumen-
tation (AAMI) recommendations [12] for class labeling and
results presentation have eased this problem, and at this time, it
is broadly accepted [4], [5], [8]–[11]. From the different clas-
sification approaches presented in these papers, some of them
classify beats without any local expert (LE) assistance [2]–[4],
[8], [10], but others take advantage from a LE to improve the
classification performance [2], [3], [7], [8]. Regarding to the
classes of interest, the AAMI recommendation suggests five
classes: supraventricular (S), ventricular (V), fusion (F), beats
that cannot be classified (Q), and normal (N) [12]. It is remark-
able that all previous works were interested in discriminating
between N and V classes, but only few of these works studied
the multiclass classification problem [3], [4], [8], [10]. In terms
of the data division, some works performed a beat-oriented di-
vision, no matter which subject the heartbeats belong to, so that
both the training and testing datasets contain heartbeats from
the same subjects [5], [9], [11]. It was shown in [4] that this
approach leads to an optimistic bias of the results, being more
advisable a patient-oriented division, as it will also happen in
the application scenario, where the algorithm is to be used.

Concerning the features used for classification (classification
model), the surrounding RR intervals were considered in al-
most all published works. Other choices were the decimated
ECG samples (mostly from the QRS complex or T wave) [4],
or transformed by Hermite polynomials [3], or wavelet decom-
position (WT) [8]. Some works use features that integrate in-
formation present in both leads, like the vectocardiogram max-
imal vector (VCGM ) and angle (VCGφ ) [6]. Another multilead
strategy can be seen in [4], where a final decision is taken
from several posterior probabilities calculated from single-lead
features. In the same work, features derived from the delin-
eation of the ECG, like the QRS complex and T wave duration,
proved to be useful for classification. In some works, where the
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TABLE I
CLASS DISTRIBUTION OF THE DATABASES USED AND DIVISION OF THE MIT-BIH-AR DATABASE INTO TRAINING (DS1) AND TESTING (DS2) SETS

dimensionality of the problem was an issue, feature transfor-
mations like principal components analysis (PCA) were used
to keep the dimension of the model as low as possible [11].
However, none of the reviewed papers considered the use of a
feature selection algorithm to retain the most relevant features.

Several classifiers were adopted in the reviewed papers, from
simple linear discriminant functions based on the Gaussian as-
sumption of the data [4], [8] to more elaborated ones, as arti-
ficial neural networks (ANN’s), self-organizing maps (SOM),
and learning vector quantization (LVQ) among others [2], [3],
[5], [6], [9]–[11].

The database used without exception by all groups was the
MIT-BIH Arrhythmia database (MIT-BIH-AR) [13] for training
and testing purposes. None of the reviewed papers reported the
generalization properties of the proposed algorithms outside the
MIT-BIH-AR database.

The objective of this paper is to develop and evaluate a
heartbeat classification algorithm according to the following
conditions.

1) Perform fully automatic ECG classification (without LE
intervention).

2) Follow AAMI recommendations for class labeling and
results presentation.

3) Use a simple classifier (as linear or quadratic discriminant
functions) to ensure that the classification performance is
due to the features selected.

4) Features should have a physiological meaning, being sim-
ple to compute and robust to the typical kind of noise
present in the ECG.

5) Use a multidatabase validation approach for feature se-
lection to ensure better generalization properties of the
selected feature set.

II. METHODOLOGY

A. ECG Databases

In this paper, we used the well-known MIT-BIH-AR [13]
for training and testing purposes. Additionally, the MIT-BIH
Supraventricular Arrhythmia database (MIT-BIH-SUP) [14]
and the St. Petersburg Institute of Cardiological Technics (IN-
CART) database were used for evaluation and testing purposes,
in order to assess the generalization achieved by the classifica-
tion models developed in the MIT-BIH-AR. All databases are
freely available on Physionet [15] and their details are summa-
rized as following.

1) MIT-BIH Arrhythmia Database: The database consists of
48 two-lead recordings of approximately 30 min. and sampled at
360 Hz. The first 23 recordings were extracted from routine am-
bulatory practice, while the remaining 25 were selected because
of the presence of less common complex ventricular, junctional,
and supraventricular arrhythmias. The two recorded leads are
not the same in all recordings, depending on the arrhythmia
and physical limitation of the subject’s body. The annotations
provided with the database were used for training and testing
purposes, following the recommendations and class labeling of
AAMI ([12, Sec. IV-B] and [4, Tab. I]). We adopted the train-
ing (DS1) and test (DS2) set division scheme used in [4] for
comparative purposes of the results. The four recordings with
paced beats were discarded in this paper in accordance with
AAMI [12]. The AAMI Q class (unclassified and paced heart-
beats) was discarded, since it is marginally represented in the
database. This limitation occurs to a lesser extent with the fusion
(F) AAMI class, but instead of discarding the heartbeats of this
class, a class-labeling modification to the AAMI recommenda-
tion is proposed here and was adopted. It consists in merging
fusion (of normal and ventricular beats) and ventricular classes,
as the same ventricular class (V’). We will refer to this modifi-
cation as AAMI2 labeling. The division scheme is summarized
in Table I.

2) MIT-BIH Supraventricular Arrhythmia Database: The
database consists of 78 two-lead recordings of approximately
30 min. and sampled at 128 Hz. The recordings were chosen
to supplement the examples of supraventricular arrhythmias in
the MIT-BIH-AR. The annotations of the recordings were first
automatically performed, by the Marquette Electronics 8000
Holter scanner, and later, reviewed and corrected by a medi-
cal student [16]. The original labeling was also adapted to the
AAMI recommendations and to the AAMI2 modification. This
database will be considered for validation and model selection
purposes. The class distribution is shown in Table I.

3) INCART 12-Lead Arrhythmia Database: This database
consists of 75 annotated recordings extracted from 32 Holter
records. Each record is 30 min. long and contains 12 standard
leads, each sampled at 257 Hz. The annotations were produced
by an automatic algorithm, and then, corrected manually, con-
taining over 175 000 beat annotations in all. The original records
were collected from patients undergoing tests for coronary artery
disease (17 men and 15 women, aged 18–80, and mean age 58).
None of the patients had pacemakers; most had ventricular ec-
topic beats. In selecting records to be included in the database,
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preference was given to subjects with ECG’s consistent with is-
chemia, coronary artery disease, conduction abnormalities, and
arrhythmias. From the 12 standard leads, the two more frequent
leads in the MIT-BIH-AR database (lead II and V1) were se-
lected to perform the experiments presented in this paper. This
database will be considered only for testing purposes. More
details about the database are shown in Table I.

B. Signal Processing

The ECG recordings of the MIT-BIH-SUP and INCART
databases were first resampled to 360 Hz, which is the sam-
pling frequency of the MIT-BIH-AR. This was performed with a
tenth-order low-pass finite-impulse response (FIR) filter without
observing any notorious distortion (resample function, Signal
Processing Toolbox of MATLAB, The Mathworks Inc., Natick,
MA). All recordings in all databases were first preprocessed
to remove artifacts as described in [4]. No energy or ampli-
tude normalization was done, as we were interested in some
amplitude-related features.

1) Wavelet Transform: Many of the considered features (ex-
plained in following sections) were based on the wavelet trans-
form (WT) of the ECG signal. The WT is defined for a
continuous signal s(t) as follows:

Wss(b) =
1√
s

∫ +∞

−∞
s(t)ψ

(
t − b

s

)
dt, s > 0. (1)

This transformation maps the ECG signal into a time-scale
plane (understanding scale as a surrogate of frequency). The
responsible of the mapping is the prototype-wavelet function
ψ(t), affected by both scaling and translation parameters s and
b, respectively. The WT allows to locate details or fast transi-
tions when scale parameter s is small, and coarser aspects or
trends for higher values. The translation parameter b indicates
the location of these finer or coarser details. As this continuous
representation is computationally unfeasible, a typical choice
is to discretize the time-scale map using a dyadic sampling,
where s = 2k and b = 2k l for k, l ∈ Z, resulting the discrete
WT (DWT). By using this restriction, lower scales have greater
sampling frequency than higher scales. But as in our application,
we are interested in keeping the time accuracy as high as possible
(at the expense of redundancy), we relax the restriction to b = l
for l ∈ Z, resulting in a time-scale plane with the same sampling
rate at each scale (algorithme á trous). It is worth to mention that
the DWT can be efficiently implemented as a filter bank. We
used the derivative of a smoothing function (quadratic spline)
as the prototype wavelet ψ(t), resulting the different scales of
the DWT as a smoothed derivative of the ECG. As a result, the
DWT retains at certain scales, the useful information present in
the ECG in form of absolute maxima and zero crossings (as we
will see later in Fig. 2). For background and implementation de-
tails, the interested reader is referred to [17] for a more detailed
description of the WT and its implementation for ECG delin-
eation. Following the conclusions of [17], the resulting DWT
framework allows an analysis robust to the typical interferences
present in routine ECG recordings, so the features derived from
the DWT are expected to inherit this desirable property.

Fig. 1. Illustration of the features calculated from the VCG loop computed
with the two available leads, for a normal (continuous line) and ventricular
(dotted line) beats. The maximum value of the loop and the angle at this point
are shown.

2) ECG Delineation: As our objective is the evaluation of a
heartbeat classifier, the QRS location is assumed to be known
and we use the annotations included in the databases. Following
the QRS complex detection positions, the delineation of each
heartbeat was performed with the delineator described in [17].
Both the delineation result and the DWT of the ECG signals
(which are intermediate signals for the delineator) were used to
calculate some features described in the following sections.

C. Classification Features

Following the conclusions of previous works [2], [4], we in-
cluded in our model both interval and morphological features.
As interval features, we used features from the RR sequence
RR[i − 1], RR[i], and RR[i + 1] to describe the local-time evo-
lution of the heart rhythm. In order to assess the local variation
of the heart rhythm, the feature RRV [i] =

∑1
j=−1 |dRR[i − j]|

(being dRR[i] = RR[i] − RR[i − 1]) characterizes the variation
in the surrounding heartbeats. We also included estimates of the
local and global rhythm by the mean RR interval in the last 1,
5, 10, and 20 min. (RRP being P ∈ {1, 5, 10, 20}, the interval
in minutes of aggregation).

The morphological features used can be grouped in three
categories depending on whether they were calculated in the
ECG signal, the 2-D VCG loop formed by both available leads
or in the DWT of the ECG signal.

1) The QRS width (QRSW = QRSOFF − QRSON ) is ob-
tained from the delineation of the ECG.

2) From the 2-D VCG loop constructed with the two avail-
able leads, we calculated two features: the maximal vector
of the QRS loop (VCGM ) and the angle of this vector
(VCGφ ), as shown in Fig. 1.
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Fig. 2. Illustration of the features calculated from the wavelet transform for
the same normal and ventricular beat in Fig. 1. The two most important peaks
from the QRS complex and T wave are indicated with an asterisk, and the
relative distances (di ) to the most important peak in the fourth scale. Also, the
scale, where the QRS complex is centered (SL

QRS ) is shown for both types of
heartbeats used for its calculation (only for one lead).

3) Regarding the features calculated from the DWT of the
ECG, three types can be defined.

a) The first type includes seven features (per lead)
that were calculated from peak amplitudes and po-
sitions from the fourth scale of the DWT (W4s(l)),
since this scale (between 12.25–22.5 Hz) has good
projection of the ECG information. These seven
features are the two greatest absolute values of the
QRS complex, the two greatest absolute values of
the T wave, and their three relative positions (to the
position of the greatest peak in the heartbeat, see
Fig. 2).

b) The second type is also calculated from the fourth
scale of the DWT. The autocorrelation signal for
both leads (rx(k) and ry (k)) and the interlead
cross-correlation signal (rxy (k)) were calculated
within a time window, which starts 130 ms before
the fiducial point and ends 200 ms after. One re-
markable aspect is that features calculated from the
correlation signals will essentially be synchronized
in time, even if the fiducial point is not accurately
determined. We calculated for the three signals, the
location and value of the absolute maximum, and
for rx and ry , the location of the first zero crossing,
as shown in Fig. 3.

c) The feature is the wavelet scale, where the QRS
complex is centered for each lead, since fast evolv-
ing signals (like a normal beat) tend to be centered
in lower wavelet scales (higher frequency content).
The QRS center scale for each lead (SLead

QRS ) is cal-
culated as the weighted sum

SL
QRS =

∑6
s=1 AL

s s∑6
s=1 AL

s

(2)

Fig. 3. Illustration of the features calculated from the wavelet correlation
signals for the same normal and ventricular beats. The autocorrelation signal of
the QRS complex at scale four is shown for both leads (rx and ry ) as well as
the cross-correlation signal (rxy ) at the bottom. The zero crossings and peaks
of interest are indicated with an asterisk.

where AL
s is the mean absolute amplitude of the QRS peaks at

scale s of the DWT, and lead L

AL
s =

1
D

D∑
d=1

∣∣WL
s s(ld)

∣∣ , s = 1, 2, . . . 6 (3)

being D the number of detected peaks (1 or 2) and ld is the
positions of the peaks.

D. Discriminant Functions

Under the assumption of normally distributed data, the MAP
classification criterion leads to quadratic discriminant functions,
broadly used for classification purposes [18]. In the general case,
the quadratic discriminant function of the ith class and feature
vector x, can be written as follows:

gi(x) = −1
2
xT Σ−1

i x + μT
i Σ−1

i x − 1
2
μT

i Σ−1
i μi

− 1
2

log(|Σi |) + log(P (ωi)) (4)

being μi , Σi , and P (ωi) the mean vector, covariance matrix,
and prior probability of the ith class. The classification rule
assigns x to the class i, which results in the maximum posterior
probability gi(x). The values of μi and Σi were computed from
the training data with the sample mean and covariance matrix
expressions as follows:

μi =
1

Mi

Mi∑
m=1

xm (5)

Σi =
1

Mi − 1

Mi∑
m=1

(xm − μi).(xm − μi)
T (6)
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being Mi the number of examples (xm ) of the ith class. The
values for the prior probabilities P (ωi) were considered the
same for all classes. In the case that the covariance matrix Σ is
considered to be the same for all classes (Σi = Σj = Σ ∀i �=
j), the quadratic discriminant classifier (QDC) becomes linear
in x leading to the linear discriminant classifier (LDC)

gi(x) = μT
i Σ−1x − 1

2
μT

i Σ−1μi + log(P (ωi)) (7)

where Σ can be estimated as the weighted sample covariance

Σ =
∑C

i=1 wi

∑Mi

m=1(xm − μi)(xm − μi)T∑C
i=1 wiMi

(8)

being C the total amount of classes and wi the weighting co-
efficients. This class-weighting possibility is of much interest
due to the heavy imbalance of the class sizes inherent to this
application, where the normal class is, in general, one order of
magnitude (at least) more represented than other classes. We
refer as LDC to the linear classifier, where wi = wj ∀i �= j,
any other weight scheme will be referred as compensated linear
classifier (LDC-C). In this paper, all classification tasks were
performed using and modifying the PRtools toolbox [19] for
MATLAB (The Mathworks Inc., MA).

E. Handling of Feature Domains

As the features to be included in our model belong to diverse
domains, like R, R

+ , and S2 (angular or directional domain),
we have to transform or deal with them in order to perform
classification tasks. In our case, we assume that each feature is
normally distributed, and therefore, valid in the R domain. Ac-
cording to this, all interval and morphological features defined
in R

+ should first being transformed to the R domain by a (nat-
ural) logarithm operation. In contrast, circular (or S2) features
require a special treatment that will be briefly described. The
interested reader is referred to [20] for more details. For a direc-
tional feature, ϑ is the mean direction and directional variance,
counterparts of the regular mean and variance are defined as
follows [20]:

μc
ϑ = arg(z) (9)

V c
ϑ = 1 − |z| (10)

where z = E[ejϑ ]. Then, for a multivariate F -dimensional
model, where Θ is the set of indexes of the directional features,
the mean vector μi , and covariance matrix Σi are as follows:

μi = [μi(1) . . . μi(F )]T (11)

with

μi(f) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Mi

Mi∑
m=1

xm (f), if f /∈ Θ

arg

(
1

Mi

Mi∑
m=1

ejxm (f )

)
, if f ∈ Θ

(12)

and

Σi =
1

Mi − 1

Mi∑
m=1

x′
mx′

m
T (13)

being

x′
m = [x′

m (1) . . . x′
m (F )]T (14)

x′
f (m) =

{
xm (f) − μi(f), if f /∈ Θ
(xm (f) − μi(f))mod 2π , if f ∈ Θ.

(15)

As it can be noted from (13), Σi can be easily calculated from
the directional mean μi and the raw data.

F. Outlier Removal for Model Parameter Estimation

The classification performance proposed strongly depends
on the parameter estimation of the multidimensional Gaussians
in the training datasets. The parameter estimation (or training)
process can be severely disrupted by the presence of outliers.
This problem can be addressed by the removal of these atypical
observations in the training data prior to the parameter estima-
tion process. In this paper, the outliers removal is performed by
the algorithm described in [21], which is a projection pursuit
method based on the robust estimation of the translation, scale,
and kurtosis of the distribution. For the ith class, the centroid
is estimated as the median, defined for F-dimensional data as
follows:

med
m

xm = med(x1 , . . . ,xMi
)

= arg min
μ∈RF

Mi∑
m=1

‖xm − μ‖ (16)

while the dispersion is estimated as the median absolute devia-
tion (MAD) calculated as follows:

DMAD(x1 , . . . ,xMi
) = 1.4826 · med

m

∣∣∣∣xm − med
j

xj

∣∣∣∣ (17)

and finally, the kurtosis is estimated as follows:

κ(x1 , . . . ,xMi
)=

∣∣∣∣∣ 1
Mi

Mi∑
m=1

(xm − med(x1 , . . . ,xMi
))

(DMADx1 , . . . ,xMi
)4

4

− 3

∣∣∣∣∣ .

(18)
The presence of outliers will make the tails of a distribution
heavier, increasing the kurtosis coefficient; while a large num-
ber of outliers give raise to other modes in the distribution,
decreasing the kurtosis coefficient. In a first phase, the algo-
rithm search for outliers in the directions, where the kurtosis of
the data is large or small to find location outliers. Then, in a
second phase, the directions of large variance are explored to
address scatter outliers [21]. For both phases, each example in
the distribution gets one weight, which are finally combined in
a final decision weight. Based on the final weight, the data is
sorted and the 5% of the most outlying examples are discarded
as outliers. With this assumption of slightly contaminated data,
we set an operating point for the tradeoff between discarding
useful data and allowing the presence of outliers in the parameter
estimation process.

G. Performance Evaluation

The performance was measured in terms of the class sen-
sitivity (Si) and class positive predictive value (P+

i ); and the
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global accuracy (A), global sensitivity (S), and global positive
predictive value (P+ ) as suggested in [12] for both, training and
testing datasets. In a multiclass classification problem, the con-
fusion matrix shows the outcome achieved by a classifier and
a detailed distribution of the misclassified events. For a C class
problem, the confusion matrix is a square matrix of dimension
C

Estimated classes

1 . . . i . . . C

True classes

1
...
i
...
C

⎛
⎜⎜⎜⎜⎜⎜⎝

nT
11 . . . nF

1i . . . nF
1C

...
. . .

...
nF

i1 . . . nT
ii . . . nF

iC
...

...
. . .

nF
C 1 . . . nF

C i . . . nT
C C

⎞
⎟⎟⎟⎟⎟⎟⎠

N1
...

Ni
...

NC

P1 . . . Pi . . . PC NT

For the ith class, nT
ii is the number of correctly classified ex-

amples and nF
ij is the number of examples of class i classified

as class j; Ni is the total number of examples for class i, Pi is
the number of examples classified as class i, and NT is the total
number of examples in the dataset

Ni = nT
ii +

∑
m �=i

nF
im

Pi = nT
ii +

∑
m �=i

nF
mi

NT =
C∑

i=1

Ni =
C∑

i=1

Pi.

Then, Si and P+
i for the ith class are defined as follows:

Si =
nT

ii

Ni
(19)

P+
i =

nT
ii

Pi
(20)

and the global accuracy (A), sensitivity (S), and positive pre-
dictive value (P+ ) are calculated as follows:

A =
1

NT

C∑
i=1

nT
ii =

C∑
i=1

Ni

NT
Si (21)

S =
1
C

C∑
i=1

Si (22)

P+ =
1
C

C∑
i=1

P+
i . (23)

From this equations, it is clear that any imbalance in the
class representation directly impacts over the P+ , P+

i , and A
calculation, but not over the S and Si .

Although the AAMI recommendation does not suggest any
measure to deal with the strong class size imbalance (see
Table I), we considered weighting the classes previous to the

Fig. 4. Block diagram describing the experiments performed in this paper. In
panel a, the feature selection algorithm is summarized, indicating the train and
validation dataset division, as well as the different parameters of the algorithm.
In panel b is shown the methodology to obtain the best performing model among
the different searches performed. Finally, in panel c, the best performing model
is selected for the final performance evaluation in the test datasets.

TABLE II
SUMMARY OF THE BEST PERFORMING MODELS FOUND WITH THE SFFS

ALGORITHM SEPARATING ALL AAMI2 CLASSES

calculation of P+
i and A in order not to neglect the performance

of the less represented classes. The balancing approach used
in this paper consists in multiplying each row of the confusion
matrix by a constant, such that the sum of each row Ni is equal
for all classes, or Ni = Nj ∀i �= j . This is equivalent to repeat
examples of the less represented classes, in order to balance
the class presence. We will refer to this as the balanced perfor-
mance estimation method in Section III. We also use another
way of showing the global performance referred as “by record-
ing,” which consists in averaging the performance estimates in
a record-by-record (or subject) way.

H. Model Selection and Dimensionality Reduction

It is well known that low-dimensional models generalize bet-
ter to examples not presented during the training phase, result-
ing in a more robust and realistic classifier [18]. In order to
obtain a small and well-performing model, a sequential floating
feature selection algorithm (SFFS) was used [22]. The SFFS
algorithm can be briefly explained as the combination of two
simpler steps, a sequential forward selection (SFS) algorithm
followed by a sequential backward selection (SBS) algorithm.
The SFFS iterates for all model sizes, starting from a single
feature model, and registering the best performances found for
each model size. Each iteration starts with an SFS step, and from
a model size greater than two features after each SFS step, an
SBS step is repeated until the performance of the model found is
not greater than the registered for this smaller model size. This
way the algorithm goes forward and backward (like floating)
searching at each step for the path of maximum performance.
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TABLE III
PERFORMANCE COMPARISON BETWEEN THE MODEL SELECTED IN TABLE II AND THE REFERENCE CLASSIFIER [4] SEPARATING

ALL AAMI2 CLASSES IN DS2 OF MIT-BIH-AR

The algorithm ends when the specified greater model size is
reached. The result of the algorithm is the model found with
maximum performance. The interested reader is referred to [22]
for a detailed description and to [19] for an implementation
of the SFFS algorithm. The performance metrics used by the
feature selection algorithm were a weighted class S and P+

calculated as follows:

JS =
∑C

i=1 πiSi∑C
i=1 πi

(24)

JP + =
∑C

i=1 πiP
+
i∑C

i=1 πi

(25)

with C classes and being Si and P+
i the class sensitivities and

positive predictive defined in the previous section. The class
weights πi allow the possibility of directing the search to specific
class performances.

I. Experiment Setup

In this paper, we are interested in finding a reduced dimen-
sion, well performing and generalizing model in a multidatabase
context. The experiment can be divided in three steps.

1) In the first step, we search for the best performing model,
from the 39 available features, in the training (DS1 of MIT-BIH-
AR) and validation (MIT-BIH-SUP) sets [see Fig. 4(a)]. In each
iteration of the SFFS algorithm, the current model was trained in
DS1 of MIT-BIH-AR and its performance was evaluated in the
MIT-BIH-SUP database. As the data divisions in both databases
do not share any recording, the features selected should retain
the generalization properties. Several parameter configurations
were studied for the SFFS algorithm, like the effect of the clas-
sifier (LDC, LDC-C, and QDC) and the optimization criterion
(JS or JP + ) for the search. The weight compensation used in
the experiments for the LDC classifier is wN = 1, wS = 10,
and wV = 10. The same weights were also studied for the JP +

and JS criterion πN = 1, πS = 10, and πV = 10. At the end
of this step, we have an optimal feature set for each parameter
configuration.

TABLE IV
FEATURES USED IN THE MODEL SELECTED IN TABLE II FOR THE FINAL

PERFORMANCE EVALUATION

2) The second step [see Fig. 4(b)] is the selection of the best
performing model, among the best models obtained in the pre-
vious step for each parameter configurations. For this purpose,
we compare the global results (A, S, and P+ ) obtained in the
union set of DS1 of MIT-BIH-AR dataset and the MIT-BIH-
SUP database, using a recording-based k-fold cross validation
with k = 10 recordings.

3) Finally, the performance of the selected model is evalu-
ated in DS2 for comparison with [4], as shown in Fig. 4(c).
Additionally, the performance in the INCART database is com-
pared to that obtained in DS2 to asses how the model behaves
in completely different databases.

The results presented in this paper are compared to the classi-
fier developed in [4] (reference classifier in the rest of this paper),
being this, to our knowledge, the best performing fully auto-
matic multiclass classifier (AAMI compliant) reviewed in the
literature. In order to perform a fair comparison, some method-
ological aspects were maintained as similar as possible. The
implementation of the classifier suggested in [4] was contrasted
with the reported results obtaining comparable results. With this
implementation, we could evaluate the generalization capabil-
ity of the reference classifier in the MIT-BIH-SUP database,
since this experiment was not performed in [4]. In these situa-
tions, where the experiments were already performed in [4], the
reported results were used.

All experiments described in this paper will focus to achieve
automatic classification between the three AAMI2 classes (N,
S, and V’), since the fusion class is poorly represented in
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TABLE V
DETAILED RESULTS GROUPING BY RECORDING (OR SUBJECT), FOR THE MODEL SELECTED IN TABLE II SEPARATING ALL AAMI2 CLASSES IN DS2 OF

MIT-BIH-AR, FOLLOWING AAMI RECOMMENDED PERFORMANCE MEASURES

TABLE VI
PERFORMANCE COMPARISON BETWEEN THE MODEL SELECTED IN TABLE II AND THE REFERENCE CLASSIFIER [4] SEPARATING ALL

AAMI CLASSES IN DS2 OF MIT-BIH-AR

the databases used. The restrictions imposed by the recording-
oriented division of the data, and the fact that only a few record-
ings concentrate the majority of the examples of the fusion
heartbeats, makes unfeasible to perform the feature selection
using the original AAMI labeling. Despite this limitation for
the model selection, the model obtained for the three AAMI2
classes was also retrained and evaluated, classifying the four
AAMI classes to show its utility.

III. RESULTS

The main results for the experiments described in the previous
section are summarized in Tables II and III. Table II shows the
results of the best models obtained for the different parameter
configurations during the model selection. The best performing

of these models was an eight feature model trained in the DS1
of the MIT-BIH-AR. The eight features that the model compre-
hends are listed in Table IV. The classifier used was an LDC-C,
using equal prior probabilities P (ωi). The optimization criterion
used in the SFFS was JP + with equal weights πi .

The performance of the selected model in the test set (DS2) is
compared with the reported by de Chazal et al. [4] in Table III.
The model found in this paper achieves better performance for
the three classes. Table V presents the performance by recording
in the test set, following the recommendations of the AAMI [12]
for result presentation.

The performance of the selected model with the four AAMI
classes (N, S, V, and F) is reported in Table VI. The model found
achieves a performance slightly lower than the reference, but it
must be noted that the selected model was optimized for the
three AAMI2 classes (N, S, and V’).
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TABLE VII
CONFUSION MATRIX AS A RESULT OF SEPARATING ALL AAMI2 CLASSES IN THE INCART DATABASE

Finally, the performance of the model found in the INCART
database is presented in Table VII. The performance obtained
in this database is comparable for all classes with that obtained
in DS2.

IV. DISCUSSION AND CONCLUSION

In this paper, we have presented a methodology to develop a
simple and robust heartbeat classification system, and we eval-
uated it focusing in the generalization capability. In order to do
this, we take into consideration the MIT-BIH-SUP [14] and the
INCART databases in addition to the widely used MIT-BIH-AR,
all freely available in Physionet [15]. Although these databases
are bigger than the original MIT-BIH-AR, the fusion class de-
fined in the AAMI standard [12] is not so well represented as
the other classes. This limitation is overcome by adopting the
alternative labeling AAMI2 proposed in this paper. The AAMI2
labeling make sense from a physiological point of view, since
the AAMI fusion class comprehends these heartbeats, which
results from the simultaneous occurrence of normal and ven-
tricular heartbeats.

From the results obtained for the model selection presented
in Table II, several models that outperform the reference classi-
fier [4] were achieved. The best model found consists of eight
features: ln(RR[i]), ln(RR[i + 1]), ln(RR1), ln(RR20), kx

Z , ky
Z ,

kx
M , and ky

M , which are described in Table IV. As can be noted,
the selected features are computed without exception from time-
interval measurements. This could be explained, given that the
used databases do not always include the same pair of ECG
leads in each recording. Therefore, the classification perfor-
mances of features, which are calculated from amplitudes are
heavily degraded. The directional features (like the VCGφ ) were
also probably affected by this fact, even if the clinical impor-
tance of this kind of features is well known by cardiologists [1].
In contrast, intervals seem to retain the classification ability
with independence of the pair of leads chosen. The first four
features in the model are clearly connected to the evolution
of heart rhythm, while the other four can be understood as
surrogate measurements of the QRS width, and therefore, the
QRS morphology. As a result, the model found has the evi-

dent advantage of a lower size, which results in a computa-
tional saving and lower error in the parameter estimation dur-
ing the training phase. In addition, it only relies on the QRS
fiducial point detection, making the classifier model robust to
degraded signals, where the delineation of the ECG waves is not
reliable.

It is worth noting than the performance achieved by the ref-
erence classifier [4] in the union of train and validation dataset
(see Table II) is lower for all classes than the obtained in the
final performance reported in Table III. The same phenomenon
happens with the suggested model in a smaller degree, with
the exception of the supraventricular performance. This phe-
nomenon was also reported in [4], obtaining better performance
in the test set than in the training set. These results suggest that
DS2 dataset may not be a good data sample to measure the ac-
tual performance of a classifier. To avoid this bias in the actual
performance, it may be convenient in future works that the fi-
nal performance estimation would be performed applying other
methodologies or redefining the test dataset. One reason that
could be biasing the results in DS2 is the different amount of
examples by recording for the supraventricular class. As can be
seen in Table V, recordings 232 and 222 concentrate the major-
ity of the examples for the supraventricular class, which means
that failing in these recordings impacts considerably to the S
class performance. For this reason, the average performances
presented in Table V could also be of importance, since each
recording or subject is equally weighted in the average.

The results presented in [7], where the automatic classifier
of [4] is assisted by a LE to improve its performance, are also
compared in Table III. This suggests that a similar approach of
combining the knowledge of a LE with our model, could also
lead to a comparable improvement in the baseline performance.

An additional assessment of the suggested model classifying
the four AAMI (N, S, V, and F) classes is presented in Table VI.
The results verify the validity of the model achieving slightly
lower performance than the results presented in [4]. It must
be noted that the model presented in this paper was optimized
for the AAMI2 labeling (N, S, and V’), and the classifier is
mainly misclassifying normal heartbeats as fusion, as shown in
Table VI.
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The results in Table VII suggest that the selected features have
good generalization capability when evaluating the performance
in heartbeats not considered during the development phase, like
the ones from the INCART database. The imbalanced perfor-
mance is comparable for all classes except the supraventricular,
where a decrease in the P+ occurred. This could be explained by
an increased class imbalance in the INCART database, which is
about 75-to-1, while in MIT-BIH-AR is 22-to-1 approximately.
This is confirmed by the balanced results (equivalent to a class
imbalance of 1-to-1) in the same table, where the performance
figures are very similar. The validity of the generalization ca-
pability of the proposed model, is somehow restricted to the
available data, and should be corroborated in future works by
including new databases in the analysis or other methodolo-
gies. Despite this limitation, the degree of generalization of the
suggested model is expected to be better than models obtained,
considering only the MIT-BIH-AR database.

One limitation of the presented approach is the Gaussian
assumption of the data imposed by the classifier, since many
features were observed not to fulfill this requirement. Despite
this evident limitation, the linear decision regions in the fea-
ture space defined by the LDC-C allowed us to select those
features, which inherently provide better classification perfor-
mance. Considering the proposed classifier and feature model
as a reference for future improvements, the effect of the lack
of Gaussianity can be mitigated using more complex classifiers,
like ANN’s or mixture of Gaussians. These classifiers allow
more complex decision regions in the feature space, retaining
details of the training data, which may improve the classification
performance.

Despite the improved results presented in this paper, there
is still room for improvement in the field, since the S and P+

for the supraventricular class are of 77% and 39%, and for
the ventricular class (though better) are of 81% and 87%. This
results suggest that other features, classifiers or meta-classifier
strategies (like LE assistance) can be developed in order to
improve the performance, specially in the supraventricular class.
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